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readthrough or nonsense suppression therapy, is 
an approach aimed at treating or alleviating the 
phenotypic consequences of a wide range of genet-
ic diseases caused by in-frame PTC or nonsense 
mutations (3). Some compounds can induce read 
through of PTCs by reducing proofreading of co-
don-anticodon recognition in the ribosome and 
result in translation of full-lenght protein. The 
induced protein might gain function although it 
carries a missense amino acid but it may have a 

INTRODUCTION

Approximately 30% of human disease causing al-
leles are premature termination codons (PTCs), 
which lead to the production of truncated proteins 
(1). PTCs can arise from various types of mutations 
in germ or somatic cells including nonsense muta-
tions that change a sense codon to an in-frame pre-
mature termination codon (PTC), insertion or dele-
tions that alter the reading frame, and mutations 
that lead to mRNA splicing defects (2). Stopcodon 
readthrough therapy, also called translational 
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nylketonuria (13), Rett syndrome (14), ataxia-tel-
angiectasia (15), xeroderma pigmentosum (16), 
mucopolysaccharidosis type I-Hurler syndrome 
(17,18), Nieman–Pick A/B, mucopolysaccharido-
sis type IIIB, mucopolysaccharidosis type II (4), 
mucopolysaccharidosis VI (19), Usher syndrome 
(20), methylmalonic academia (21), proximal spi-
nal muscular atrophy (22), and Stüve-Wiedemann 
Syndrome (23). Several pilot clinical trials with 
patients carrying nonsense mutations with cystic 
fibrosis (24,25) and Duchenne muscular dystrophy 
(26,27) have shown the partial restoration of full-
length functional protein to a variable extent with 
gentamicin administration. However, the toxicity 
of most aminoglycosides in mammals has great-
ly restricted their potential as readthrough drug 
(28). Therefore, efforts have been spent to develop 
aminoglycoside derivatives with reduced toxicity 
and enhanced activity. NB30, NB54, and NB84 
are among these aminoglycoside derivatives with 
lower toxicity and exhibiting higher readthrough 
activity (29,30).

PTC therapeutics described an efficient nonami-
noglycoside readthrough compound, PTC124 (Ata-
lurenTM), which was developed synthetically by 
screening >800,000 chemicals and analogues us-
ing a luciferase-based high-throughput screening 
(HTS) assay (31,32). A phase-I clinical study in 
cystic fibrosis confirmed that PTC124 is generally 
well tolerated and appears to have more efficient 
readthrough activity than aminoglycosides (32). 
PTC124 was initially shown to suppress nonsense 
mutations associated with Duchenne muscular 
dystrophy (DMD) and cystic fibrosis in mouse mod-
els (2).

The success of suppression therapy to provide a 
therapeutic benefit in various individuals depends 
on many factors. One particularly important fac-
tor is the threshold of correction for a particular 
disorder that varies upon the function of the factor 
and the tissues where the protein is expressed. For 
example, for some disorders that result from an 

reduced half-life due to the post-translational sur-
veillance system such as endoplasmic reticulum 
associated degradation (ERAD) but the recovered 
enzymatic activity might allow improvement of 
the biochemical phenotype (4). As a general rule 
glutamine or tryptophan is inserted at premature 
UAG/UAA or UGA codons, respectively (5). The 
best characterized of these drugs are the amino-
glycosides (6). 

Aminoglycosides act as antibiotics in high doses by 
inhibiting protein synthesis, where they bind to a 
region of the 16S ribosomal RNA in the bacterial 
ribosome called the decoding center (7). By bind-
ing to the complementary sequences 1404–1412 
and 1488–1497, respectively at the decoding cen-
ter, aminoglycosides displace non-complementary 
adenines and locking them into a ‘flipped out’ con-
figuration, which results in reduced discrimination 
between cognate and near-cognate tRNA:mRNA 
complexes and hence reducing translational fidel-
ity with an end result of nonfunctional truncated 
proteins and final cell death (8). Due to the fun-
damental differences in the nucleotide sequenc-
es that is necessary for hydrogen bond formation 
(A2408 and G1491 in bacteria, G1408 and A1491 
in mammalian cells), the interaction between ami-
noglycosides and human 18S rRNA is less stable 
but sufficient to reduce the proofreading to cause 
the insertion of a near-cognate aminoacyl-tRNA 
into the ribosomal A site that is subsequently in-
corporated into the polypeptide chain (8). Studies 
in eukaryotic cells have found that aminoglyco-
sides that bind to the eukaryotic ribosome do not 
appear to induce significant misreading at sense 
codons, but can induce low levels of misreading at 
PTCs (9).

The first demonstration that aminoglycosides 
could suppress PTC in a defective gene was car-
ried out in cystic fibrosis (10). Since then stopcodon 
readthrough has been reported in cell and animal 
models of different disorders including cystic fibro-
sis (11), Duchenne muscular dystrophy (12), phe-
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were most effective at inducing readthrough while 
tobramycin and neomycin showed lower read-
through efficiency than gentamicin, amikacin and 
paromomycin (35).

One factor leading to low readthrough efficien-
cy is the low amount of PTC-bearing transcripts 
caused by nonsense mediated decay (NMD) which 
degrades mutated mRNAs (36). NMD is a surveil-
lance system detecting and commiting PTC-bearing 
transcripts to rapid decay to prevent the synthesis 
of unstable proteins that might be deleterious for 
the cell (37). NMD is an evolutionary conserved 
mechanism to be implicated in surveillance and 
regulation of gene expression in all eukaryotes 
(38). NMD downregulates not only PTCs but also 
one-third of alternatively spliced mRNAs, certain 
selenoprotein mRNAs, some mRNAs that have 
upstream open reading frames, and some mRNAs 
that contain an intron within the 3´ untranslated 
region (39,40).The NMD process could be relevant 
in terms of the phenotypic presentation of human 
diseases caused by nonsense mutations. In some 
cases, the lack of a mutant protein due to NMD 
could result in a milder phenotype since the del-
eterious effect of the aberrant protein is partially 
abolished. In other cases, the NMD could eliminate 
a partially active mutant protein and produce a 
more severe phenotype (41,42). PTCs in mamma-
lian systems are targeted for NMD when located 
more than 50-54 nucleotides upstream the last 
exon-exon junction whereas PTCs located down-
stream of this boundary are not. Recognition of 
PTC- mRNAs and their targeting for degradation 
requires a set of conserved NMD effectors, which 
include the Up-frame shift (UPF) proteins UPF1, 
UPF2 and UPF3B and some exon junction complex 
(EJC) proteins (2). The EJC complex was shown to 
constitute a binding platform for the NMD effec-
tors UPF2 and UPF3 (up-frameshift) (37). When 
the ribosome reaches a PTC, interaction of the 
release factors eRF1 and eRF3 with downstream 
EJCs bridged by the UPF proteins triggers the 

enzyme deficiency such as mucopolysaccharidosis 
type I-Hurler (MPS I-H), as little as 1% of wild-
type enzymatic activity can significantly alleviate 
the disease phenotype (33).

FACTORS AFFECTING THE RESPONSE TO 
READTHROUGH

Several factors were reported to affect the efficiency 
of stopcodon readthrough treatment including the 
identity of the PTC, the sequence context around 
the PTC and nonsense mediated decay (NMD). 
UGA stop codon exhibit the highest readthrough 
efficiency, followed by UAG and, to a lesser extent, 
UAA (5,34).  Regarding the effect of sequence con-
text, the fourth position of the tetranucleotide also 
plays a role in determining the efficiency of read-
through; however, its effect depends on largely to 
the PTC itself (4,5). For example, the UGA C was 
shown to exhibit a three-to sixfold higher level of 
readthrough than the other UGA (N) signals. The 
relative order of susceptibility to readthrough as a 
function of the fourth base was C>A, G>U. Howev-
er, readthrough of the UAG C and UAA C signals 
was not significantly higher than the readthrough 
observed at the other UAG (N) and UAA (N) sig-
nals, respectively (5).

Gentamicin treatment of C2C12 mouse myoblast 
cells transfected with PTC-bearing dual lucifer-
ase vector resulted in ~8% readthrough for UGA 
C while little measurable increase in readthrough 
was observed for UAA A (mdx) premature stop 
codon for Duchenne’s muscular dystrophy (DMD) 
and Becker’s muscular dystrophy (BMD). Gentami-
cin-induced readthrough levels for eight PTCs iden-
tified in DMD and BMD patients varied between 
approximately 1 and 10% and roughly paralleled 
as a function of the fourth base (UGA>UAG>UAA; 
+4 C>U>G≥A) (35).

Chemical composition of aminoglycosides is an-
other factor affecting the response to readthrough. 
When compared in human cells expressing re-
porter constructs, gentamicin and paromomycin 
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with MPS IIIB (Sanfilippo B) harbouring p.W168X-
/p.Q566X, and one with MPS IIIC (Sanfilippo C) 
harbouring p.R384X/c.1542+dupA mutations, it 
was found that although no recovery was detect-
ed for relevant enzyme activities, mRNA recovery 
was observed in both cases, nearly a two-fold in-
crease for Sanfilippo B fibroblasts with G418 and 
around 1.5 fold increase for Sanfilippo C cells with 
RTC14 and PTC124 (48).

Strategies have been developed to inhibit NMD 
and hence increase the expression of PTC contain-
ing mRNAs by using small molecules. Through a 
high-throughput screening, amlexanox was found 
to inhibit to increase the amount of PTC-bear-
ing mRNAs in cell lines from patients suffering 
from nonsense-mutation mediated lung cancer, 
Duchenne muscular dystrophy (DMD) or cystic 
fibrosis (CF) (49). In addition to acting as NMD 
inhibitor, amlexanox leads to the readthrough of 
mutated mRNA and results in the synthesis of 
full-lenght protein (49). Amlexanox was found to 
be as potent as G418 and PTC124 and more effec-
tive than combinations of them at higher concen-
trations due to the combined function of amlex-
anox in both NMD and readthrough processes (49).

CONCLUSION

Premature termination codons (PTCs) or nonsense 
mutations account for about 11% of all described 
gene defects that cause inherited diseases. Stop-
codon readthrough, also called nonsense suppres-
sion, hold promise as a therapeutic strategy for 
the treatment of a broad range of genetic diseases 
caused by nonsense mutations. An advantage of 
stopcodon readthrough therapy is that it can be 
applied to any disease provided that the molecular 
cause is a primary nonsense mutation in which the 
PTC results directly from a point mutation in the 
DNA. In the case of neurological lysosomal stor-
age diseases, additional advantage is the potential 
penetrance through the blood brain barrier. The 
fact that a slight recovery of protein levels could 

phosphorylation of UPF1 and subsequent degrada-
tion of the mRNA (for detailed information about 
NMD, see the reviews (37,43,44,45).

PTC readthrough compounds may increase the 
stability of mutant RNA by limiting NMD. In-
fact, several papers have reported that gentami-
cin and other readthrough agents inhibit NMD 
and increase the amount of PTC-containing RNAs 
(4,46,47). In an effort to determine the correlation 
between the recovery residual enzymatic activity 
and mRNA expression in response to gentamicin 
treatment, mRNA expression levels of about 20-
40% that of controls for SMPD1 (Nieman-Pick 
A/B disease) and NAGLU (MPS III disease) genes 
except IDS gene (MPS II disease) was observed 
(4). Although these levels did not reach those ob-
tained after treatment with cycloheximide, which 
is a general translation inhibitor used to assay for 
the occurrence of NMD, suggesting that gentami-
cin readthrough was not totally efficient and some 
mRNA was still being degraded. Interestingly, the 
gentamicin treated culture of MPS II (Hunter) dis-
ease presented mRNA expression levels similar to 
controls, which is explained by the location of the 
relavant PTC in IDS gene where it is located in the 
last exon, so that the resulting mRNA might elude 
the NMD surveillance mechanism resulting in nor-
mal mRNA levels (4). In the same study, genta-
micin treatment of two different MPS III patients, 
one with p.W168X and p.R234C and another with 
p.W168X and Q566X resulted in approximately 
20% and 40% increase in NAGLU gene expression, 
respectively. Although one of the alleles of MPS 
III patient (p.Q566X) is located in the last exon of 
NAGLU gene, mRNA expression in fibroblasts was 
low (20% of control values), which was explained 
by the presence of p.W168X mutation that did not 
elude the NMD surveillance (4).

In a study investigating the readthrough effects 
of gentamicin, G148 (geneticin) and five non-ami-
noglycoside compounds (PTC124, RTC13, RTC14, 
BZ6 and BZ16) on fibroblasts from one patient 



Dündar H.

39www.tjmbb.org

enzyme replacement is not an option. As the re-
sulting readthrough proteins contain a different 
amino acid that might cause misfolded protein, 
combined application of readthough drugs with 
pharmacological chaperones or proteostasis regu-
lators should be considered.

be enough to alleviate disease phenotype, and po-
tential penetrance of readthrough drugs through 
the blood brain barrier makes the stopcodon read-
through therapy an ideal treatment method main-
ly in diseases with neurological symptoms that 
are caused by nonsense mutations and for which 
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