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fatase (MPS IIIA), N-acetyl-α-glucosaminidase 
(MPS IIIB), acetyl CoA: α-glucosaminide N-acet-
yltransferase (MPS IIIC), or N-acetylglucosamine 
6-sulphatase (MPS IIID) (3). They result from mu-
tations in SGSH (coding for heparan-N-sulfatase), 
NAGLU (coding for α-N-acetylglucosaminidase), 
HGSNAT (coding for acetyl-CoA:α-glucosaminide 
acetyltransferase), and GNS (coding for N-acetyl-
glucosamine-6-sulfatase), respectively (4). MPS 

INTRODUCTION

Mucopolysaccharidosis type III (MPS III) or San-
filippo syndrome belongs to the group of approxi-
mately 50 inherited monogenic lysosomal storage 
disorders (LSDs) (1). Currently, there are four au-
tosomal recessive subtypes of MPS III (A, B, C and 
D) recognized in humans (2); each is caused by the 
deficiency of one of four enzyme activities respon-
sible for the degradation of a common glycosamino-
glycan (GAG), heparan sulphate: heparan-N-sul-
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ABSTRACT • Mucopolysaccharidosis type III (Sanfilippo) is a group of four autoso-
mal recessive lysosomal storage diseases resulting from a failure to degrade glycos-
aminoglycans. The four biochemical subtypes of Mucopolysaccharidosis type III (MPS 
III A–D) are caused by the deficiency of one of the four enzymes required for heparan 
sulfate degradation. Unlike the other MPSs that present with extensive somatic involve-
ment, patients with MPS III typically present with neurological signs and symptoms. 
Although enzyme replacement therapy is effective to some extent in management of 
somatic pathology of many lysosomal storage diseases, it seems to be of low effica-
cy in treatment of neurological symptoms because of the blood-brain barrier. In spite 
of some treatments for other MPS disorders, which mostly alleviate non-neurological 
symptoms, no therapy is currently available for MPS III. Treatment of the neurological 
symptoms of MPS III remains challanging due to blood-brain barrier that restricts the 
crossing of therapeutics to the central nervous system (CNS). Intraventricular enzyme 
replacement, gene therapy, hematopoietic stem cell transplantation, substrate reduc-
tion therapy, pharmacological chaperone therapy and stopcodon readthrough therapy 
are new experimental therapeutic approaches that circumvent this barrier. This review 
discusses some of the emerging treatment strategies to treat MPS III, and evaluates the 
outcomes of these treatments in animal models and human patients as well as those 
of in vitro.
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observed in lysosomes and other organelles such 
as mitochondria and Golgi bodies (14,15), either 
by direct GAG-mediated inhibition of lysosomal 
enzymes responsible for ganglioside degradation 
(16) or by deregulated trafficking or synthesis of 
gangliosides (15).

MOLECULAR GENETIC OF MPS III

MPS III is an autosomal recessive disease with 
four substypes according to the four enzymatic 
deficiencies caused by multiple mutations.  MPS 
IIIA is caused by mutations in the SGSH gene 
resulting in sulfamidase or heparan N-sulfatase 
deficiency. A total of 137 mutations have been 
described to date (Human Genome Mutation Da-
tabase, http://www.hgmd.cf.ac.uk/ac/index.php); 
most of these are missense mutations (77.3%); 
also, nonsense mutations, insertions and deletions 
have been reported. The mutation p.R245H is most 
common in Germany and the Netherlands, p.R74C 
in Poland, p.S66W in Sardinia and c.1091delC in 
Spain (17). The mutations in NAGLU gene encod-
ing α-N-acetylglucosaminidase are responsible for 
MPS IIIB, where missense mutations outnumber 
nonsense and deletion mutations (17). Mapping 
the positions of known missense mutations onto 
the NAGLU protein revealed that they are scat-
tered throughout the protein and only four mis-
sense mutations occur at the active site (18). These 
missense mutations reduce the stability of NAG-
LU thus resulting in less functional enzyme (19). 
MPS IIIC is caused by mutations in the HGSNAT 
gene localized in a pericentromeric region in chro-
mosome 8p11.21 (20). Although the spectrum of 
mutations in MPS IIIC patients shows substantial 
heterogeneity, some of the missense mutations 
have a high frequency within the patient popu-
lation such as p.R344C and p.S518F accounting 
for 22.0% and 29.3%, respectively, of the alleles 
in Dutch population (21). MPS IIID is caused by 
mutations in the GNS gene on chromosome 12q14, 
which encodes N-acetylglucosamine-6-sulfatase 

IIIA and IIIB are the most prevalent subtypes 
with incidences ranging between 0.2 and 1.89 per 
100,000 live births while the incidence for MPS 
IIIC is reported to be 0.07-0.21 per 100,000 live 
births. MPS IIID is extremely rare with an inci-
dence of 0.1 per 100,000 live births (3). Character-
ized by earlier onset, more rapid symptom progres-
sion, the clinical course in MPS IIIA is more severe 
than other subtypes (5).

Biochemically, MPS III is characterized by abnor-
mal storage of heparan sulfate (HS) in lysosomes 
of all tissues and organs and its excretion in urine 
(6). Heparan sulfate is a negatively charged glycos-
aminoglycan (GAG) covalently bound to a number 
of proteins at the cell surface and in the extracellu-
lar matrix and catabolized within lysosome (7). Its 
degradation starts with endolytic cleavage by en-
doglycosidase and proceeds in a stepwise fashion 
by three exoglycosidases, at least three sulfatases 
and an acetyltransferase. The deficiency in three 
of them, α-L-iduronidase, iduronate sulfatase and 
β-glucuronidase, results in the lysosomal storage 
disorders MPS I, II and VII, respectively. The oth-
er four enzymes (SGSH, NAGLU, HGSNAT, GNS) 
are specific for HS and a deficiency leads to MPS 
III (for detailed review see (8). The abnormal stor-
age of GAG affects different signaling pahways by 
interacting with molecules such as growth factors 
(9,10). The injury in neurons activates microglia 
and the constant release of inflammatory media-
tors. The accumulation in storage vesicles has been 
detected also in microglial cells in a mouse model 
of MPS IIIC (11). These cells play an important 
role in the brain defence and may release differ-
ent toxic products. Thus, affection of the glial cells 
together with the inflammation may contribute to 
neuronal degeneration in MPS III (12). Lysosomal 
storage of heparan sulfate causes mitochondrial 
defects, altered autophagy, and neuronal death in 
the mouse model of mucopolysaccharidosis III type 
C (13). In addition to HS storage, the secondary 
accumulation of the gangliosides GM2 and GM3 is 
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PATHOLOGY OF MPS III

The storage of heparan sulfate, secondary accu-
mulation of GM2 and GM3 gangliosides and neu-
roinflammation events were shown in the brains 
of MPS IIIA and IIIB mouse brains (12,28-31). In 
a study to compare neuropathology in mouse mod-
els of MPS I, IIIA and IIIB, quantitative immu-
nohistochemistry showed significantly increased 
lysosomal compartment, GM2 ganglioside storage, 
neuroinflammation, decreased and mislocalised 
synaptic vesicle associated membrane protein, 
(VAMP2), and decreased post-synaptic protein 
Homer-1 in layers II/III-VI of the primary motor, 
somatosensory and parietal cortex. In addition, 
increased HS, abnormally N-, 6-O and 2-O sul-
phated compared to WT, neuroinflammation, dys-
trophic axons, axonal storage, and extensive lipid 
were observed (31). Substantial >30% reduction of 
neuronal density in somatosensory cortex and sub-
stantial loss of purkinje cells in cerebellar cortex 
have been demonstrated in homozygous Hgsnat-
Geo MPS IIIC mice. Neurons of MPS IIIA, IIIB 
and IIIC mouse models contain SCMAS (subunit 
C of mitochondrial ATP synthase) aggregates, in-
creased levels of ubiquitin and protein markers of 
Alzheimer disease and other tauopathies such as 
lysozyme, hyperphosphorylated tau (Ptau), Ptau 
kinase, Gsk3β, and β amyloid suggestive of mi-
tophagy and a general impairment of proteolysis 
(32,33).

Post-mortem studies carried out on brain tissue 
from children with MPS IIIB revealed the accumu-
lation of phosphorylated α-synuclein in spheroidal 
structures in the temporal cerebral cortex, hip-
pocampus, periaqueductal gray, substantia nigra 
and anteroventral nucleus of the thalamus (34). In 
addition to post-mortem studies carried on brain 
tissues of patients and animal models, induced 
pluripotent stem cells (iPSCs) derived from fibro-
blasts of patients provide access to affected neu-
rons and offer a good opportunity to model human 
neurodegenerative diseases. In a study to mod-

(22). A homozygote c.1169delA (23) and a homo-
zygote p.R355X (24) mutations were the first GNS 
mutations identified. The nonsense mutation 
p.Q272X and a large deletion (25), the nonsense 
mutation p.Q390X, a splice-site mutation (c.876-
2A>G) and c.1138_1139insGTCCT are other GNS 
mutations identified (22).

CLINICAL ASPECTS

Generally, MPS III manifests at 2 to 3 years of age 
with developmental delays, initially appearing as 
language deficits followed by behavioral problems, 
sleep difficulties, progressive cognitive and motor 
function regression (26). Somatic symptoms in hu-
mans can include coarse facial features with broad 
eyebrows, dark eyelashes, dry and rough hair, and 
skeletal pathology that affects growth and causes 
degenerative joint disease, hepatosplenomegaly, 
macrocephaly, and hearing loss. Unlike other MPS 
types, major clinical characteristic of MPS III is 
however degeneration of the central nervous sys-
tem (CNS), resulting in mental retardation and 
hyperactivity (7). Although four MPS III subtypes 
are assumed to be clinically indistinguishable, the 
clinical course in type A is more severe with earlier 
onset, rapid progression and shorter survival (27). 
It was reported that MPS IIIA patients lost their 
abilities to speak and walk earlier than the MPC 
IIIC patients. Median age at death is 15.22 ± 4.22 
years in MPS IIIA patients, 18.91 ± 7. 33 years in 
MPS IIIB patients and 23.43 ± 9.47 years in MPS 
IIIC patients according to the data obtained from 
the Society of Mucopolysaccharide Diseases (UK)  
(2). Pneumonia was reported as the leading cause 
of death for both MPS IIIA and IIIB, accounting 
for more than 50% and 38%, respectively. Other 
causes of death include cardiorespiratory failure, 
gastrointestinal complications and central ner-
vous systemcomplications according to the data 
obtained from the Society of Mucopolysaccharide 
Diseases (UK)  (2).
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sulted in consistent declines in cerebrospinal fluid 
(CSF) heparan sulfate (39). However, immune re-
sponses of patients to recombinant enzyme, high 
cost of the enzyme, requirement of regular enzyme 
infusions in a hospital setting are other limitations 
of ERT.  A recent ERT clinical trial for MPS II has 
shown the inconveniences about the implantation 
of such devices for periodic delivery of proteins to 
the CNS (40).

Hematopoietic stem cell transplantation

Although hematopoietic stem cell transplantation 
(HSCT) was shown to be effective for MPS I-Hurl-
er with improvement of clinical parameters and 
increased life expectancy, it is not considered an 
effective method for MPS III because of concerns 
regarding neurological aspects (41). Patients can 
benefit HSCT if transplation is performed before 
somatic and intellectual development are severely 
affected (42). In this approach, HSCs repopulate 
the recipient and secrete enzyme which cross-cor-
rects cells in the periphery but cannot cross BBB. 
However, monocytes traffic from the blood into 
the brain where they differentiate into microg-
lial cells and mediate crosscorrection in the cen-
tral nervous system (43). Allogeneic bone marrow 
transplantation was performed for children with 
MPS IIIA (44) and IIIB (45) but their neurological 
conditions were not prevented. Although lentivi-
ral (LV)-transduced wild-type cells improved neu-
ropathology in MPS IIIA mice, lentiviral-trans-
duced autologous MPS IIIA cells were unable to 
mediate neurological correction, possibly due to 
insufficient enzyme production in brain (46). How-
ever, when transplanted into MPS IIIA mice, au-
tologous HSCs expressing codon optimized SGSH 
under myeloid-specific promoters CD11b (CD11b-
coSGSH vector) normalized MPS IIIA behavior, 
brain HS, GM2 ganglioside, and neuroinflamma-
tion to WT levels (47).

Gene therapy

Gene therapy attempts to introduce the coding se-

el MPS IIIB disease, patient iPSC and neuronal 
progeny of these cells expressed MPS IIIB disease 
that not apparent in parantel fibroblasts including 
storage vesicles and severe disorganization of Gol-
gi ribbons associated with modified expression of 
the Golgi matrix protein GM130 (35).

THERAPY

Currently there is no treatment for MPS III. The 
cognitive and neurological problems are major 
clinical characteristics of MPS III. Management 
consists of supportive care and treatment of spe-
cific complications. The neurological nature of the 
disease makes treatment problematic due to the 
blood-brain barrier (BBB). There are numerous 
pre-clinical research projects examining various 
treatment strategies for MPS III. These recent 
treatment strategies are summarized and dis-
cussed in this review.

Enzyme replacement therapy

Although enzyme replacement therapy (ERT) has 
been shown to have a positive effect on systemic 
symptoms of the disease in many MPS types (MPS 
I, II, IVA, and VI), the main problem with this ther-
apy is delivery of the enzyme to central nervous 
system (CNS) due to blood brain barrier (BBB) 
(36). This limits the utility of enzyme ERT for the 
treatment of neurological symptoms of MPSs. Re-
combinant caprine GNS enzyme was shown to cor-
rect liver pathology of a goat affected by MPS IIID, 
but it did not result in improvement in the enceph-
alon due to fractional delievery of the enzyme to 
the CNS (37). A possible strategy to circumvent 
BBB is direct delivery of the enzyme in the cere-
brospinal fluid (CSF) through either intracerebro-
ventricular (ICV) injection into the lateral ventri-
cle, or intrathecal injection into the lumbar spine 
or subarachnoid space at the cisterna manga (38). 
A phase 1/2 study of intrathecal heparan-N-sulfa-
tase in patients with mucopolysaccharidosis IIIA 
appeared generally safe and well tolerated, and re-
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Substrate reduction therapy

Substrate reduction therapy (SRT) uses small mol-
ecules such as the isoflavone compound genistein 
to decrease the synthesis of HS and hence to im-
prove the balance between the synthesis and 
degradation. Genistein is thought to impair GAG 
symthesis by inhibiting tyrosine autophosphor-
ylation of the epidermal growth factor receptor 
(EGFR), which reduces the expression of factors 
responsible for GAG synthesis (58,59). Genistein 
treatment of cultured fibroblasts derived from 
MPS I, MPS II, MPS III, and MPS VII patients was 
shown to reduce GAG storage (58,60). GAG storage 
was also reduced in MPS II and MPS III mice af-
ter oral genistein administration (61,62). Although 
8 weeks of daily genistein treatment reduced the 
total GAG content and the size of the lysosomal 
compartment significantly in the livers of male 
MPS IIIB mice, no change in total GAGs, lysosom-
al size or reactive astrogliosis in the brain cortex 
were observed despite evidence that genistein can 
cross BBB (61). However, genistein treatment over 
a 9 month period significantly reduced lysosomal 
storage, HS and neuroinflammation in the cere-
bral cortex and hippocampus in MPS IIIB mice, 
resulting in correction of the behavioural defects 
observed (63).

In clinical trials that administered genistein to 
MPS III patients orally in a soy isoflavone extract, 
mixed results were obtained.  Patients treated with 
5-10 mg/kg genistein for 12 months did not exhibit 
cognitive improvements (64,65); however, longer 
36-month treatment improved cognitive function 
(66). In addition, in MPS IIIA mice treated with 
rhodamine B ((9-(2-carboxyphenyl)-6-diethylami-
no-3-xanthenylidene)-diethylammonium chloride), 
GAG levels decreased both in somatic tissues and 
brain with an improvement in animal behavior 
(67,68). However, rhodamine was never tested at a 
clinical trial since its adverse effect on humans had 
already been reported (69). N-butyldeoxynojirimy-
cin (miglustat), an inhibitor of ceramide glucosyl-

quence of the protein (cDNA) into the cells of pa-
tients via the use of a viral vector. Manipulated 
cells synthesize and secrete the enzyme of interest 
into circulation, which is taken up by unaltered 
cells (7). Intracerebral, intrathecal (IT), or intra-
cerebroventricular (ICV) injection of adeno-associ-
ated viruses (AAV) and lentiviral vectors success-
fully treated brain disease in MPS I, IIIA, IIIB, 
and VII animal models, inducing stable expression 
of the vector and enzyme (48-53). Co-delivery of 
SGSH or sulfamidase and SUMF1 via intraven-
tricular injection of a recombinant AAV vector 
resulted in increased sulfamidase activity in the 
mouse brain, decrease in lysosomal storage and 
microglial activation and enhancement of motor 
and cognitive capabilities (48). A clinical trial eval-
uating intracerebral injection of an AAVrh10hMP-
S3A vector, an AVV vector encoding both SGSH 
and the sulfatase modifying factor SUMF-1, in 
combination with immunosuppressive treatment 
showed moderate improvements in behavior, at-
tention, and sleep (54). A similar gene therapy ap-
proach based on AAV-mediated NAGLU delivery 
for treating MPS IIIB mice resulted in a signifi-
cantly prolonged lifespan and improved behavioral 
performences compared to untreated MPS III mice 
(55). An AAV-based vector designed to target liver, 
which included sulfamidase engineered to be fused 
to both the signal peptide of iduronate-2-sulfatase 
protein and the BBB binding domain of apolipopro-
tein B resulted in reduction of neuropathology and 
restoration of behavior in MPS IIIA mice, where 
BBB binding domain permitted rescue of sulfami-
dase in the brain (56).

Finally, a recent study showed that treatment of 
a new MPS IIID mouse model with adeno-associ-
ated viral (AAV) vectors of serotype 9 delivered to 
the cerebrospinal fluid completely corrected patho-
logical storage, improved lysosomal functionality 
in the CNS and somatic tissues, resolved neu-
roinflammation, restored normal behaviour and 
extended lifespan of treated mice (57).
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out in cystic fibrosis (76,77). Since then PTC read-

through has been documented in vitro and in cell 

and animal models of different disorders including 

muscular dystrophy (78), methylmalonic-aciduria 

(79), Stüve-Wiedemann syndrome (80), propion-

ic acidemia (81), phenylketonuria (82), xeroder-

ma pigmentosum (83), mucopolysaccharidosis VI 

(84), Rett syndrome (85), mucopolysaccharidosis 

type I-Hurler (86). The toxicity of aminoglycosides 

in mammals has greatly restricted their poten-

tial for successful readthrough therapy and led to 

searching for better aminoglycoside derivatives 

with reduced toxicity and enhanced activity (87). 

A luciferase-based high-throughput screening by 

PTC Therapeutics identified a non-aminoglycoside 

readthrough drug, PTC124(88). PTC124 has not 

adverse effects in contrast to aminoglycosides and 

has a great potential for treating genetic diseases 

caused by PTCs. Clinical trials of this drug are un-

derway for patients with cystic fibrosis (phase III), 

Duchenne muscular dystrophy (DMD) (phase II), 

and other diseases (89).

The first readthrough study on MPS III disease was 

carried out on NAGLU and HGSNAT mutations 

(90), where fibroblasts bearing the p.W168X (NAG-

LU), p.Q566X (NAGLU), and p.R384X (HGSNAT) 

mutations were treated with gentamicin, geneticin 

and five non-aminoglycoside (PTC124, RTC13, 

RTC14, BZ6 and BZ16) readthrough compounds. 

Neither of the tested drugs resulted in any recov-

ery at the enzyme acitivity levels for all three mu-

tations. However, a two-fold increase (75-90% of 

WT) in mRNA recovery for MPS IIIB fibroblasts 

treated with G418 and about 1.5 fold increase (45-

50% of WT levels) in mRNA recovery for MPS IIIC 

fibroblasts treated with RTC14 and PTC124 was 

observed. Although no increase in enzyme activi-

ty was observed, G418 treatment resulted in high 

recovery of NAGLU mRNA for p.W168X/p.Q566X 

genotype, suggesting that the readthrough product 

was not active (90).

transferase and therefore of ganglioside synthesis, 
approved for the treatment for Niemann-Pick type 
C, has been shown to improve learning and restore 
the innate fear response in MPS IIIA mice by de-
creasing ceramide glucosyltransferase activity 
(70).

Stopcodon readthrough therapy

Premature termination codons (PTCs), also called 
as nonsense or stop mutations, represent a minor 
portion of the all mutations responsible for MPS 
III and cause neglible enzyme activity. In MPS III, 
they comprise about 10% in Type A, somewhere 
between 20-30% in Type B, somewhere between 
10-20% in Type C and 8% in Type D, of all mu-
tations. Since translation termination is not 100% 
efficient, a low level of translational read-through 
of termination codons occur, which results in the 
incorporation of an amino acid in place of a PTC 
(71). Some aminoglycosides combine with A site 
oligonucleotides of ribosome, thus reducing the fi-
delity of normal translation and promote stopco-
don readthrough according to the results obtained 
from crystallographic and modelling studies (72). 
Gentamicin, amikacin, paromomycin, G418 (gene-
ticin), lividomycin, tobramycin, and streptomycin 
were shown to suppress permature termination 
codons (PTCs) in mammalian cells and result in 
translation of full-lenght protein protein that is 
functional when the PTC is not at a crucial posi-
tion (73). Glutamine (Gln) and tryptophan (Trp) 
are the most common amino acid insertions; UAG 
or UAA miscode Gln, whereas UGA miscodes Trp 
(74). In addition the identitiy of PTC itself and 
the sequence context around the PTC are crucial 
factors determining the efficiency of readthrough, 
with the highest readthrough efficiency observed 
for UGA codon, followed by UAG, and to a lesser 
extent, UAA (75).

The first demonstration that aminoglycosides 
could suppress PTC in a defective gene was carried 
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ol, polyols, dimethylsulfoxide (DMSO) or sodium 

4-phenylbutyrate (4-PBA) represent chemical 

chaperones which also improve the folding of mu-

tant proteins (96-100). From a functional point of 

view, chemical chaperones can be subgrouped into 

osmolytes and hydrophobic compounds. Osmolytes 

are uncharged or zwitterionic molecules that can 

change solvent properties, hence forcing thermo-

dynamically unstable proteins to fold and stabilize 

(93). Polyols (glycerol, trehalose, sucrose), trime-

thylamine N-oxide (TMAO), taurine, β-alanin, gly-

cin may act as osmolytes. Hydrophobic chaperones 

act as protectors by interacting with the exposed 

hydrophobic segments of unfolded proteins, thus 

preventing protein aggregation. 4-PBA is one of 

the most well-known chemical chaperones and it 

has been shown to reverse misfolding of various 

mutant proteins (101,102).

Pharmacological chaperones are small molecules 

that bind to proteins specifically via electrostatic 

forces, van der Waals forces, or hydrogen bonding, 

thus inducing thermodynamic stabilization and 

contributing to recover protein function. They are 

protein specific, and some are mutation specific 

(103). Pharmacological chaperones are compete-

tive inhibitors of enzymes where weaker inhibitors 

shows minimum enhancement of mutant enzyme 

activity while more potent inhibitors act as more 

effective chaperones (104). Enzyme cofactors may 

act as another type pharmacological chaperones. 

An increase in the amount of the natural cofactor 

might stabilize misfolded proteins. A well known 

example is tetrahydrobiopterin (BH4), the nat-

ural cofactor of phenylalanine hydroxylase, the 

defective enzyme in phenylketonuria (PKU). BH4 

treatment is effective in almost half of PKU pa-

tients (92). Many chaperone approaches have been 

assayed at different levels for LSDs such as Fab-

ry (105), GM1-gangliosidosis (106), Pompe (107), 

Gaucher (108), Krabbe (109), and Niemann-Pick 

type C  (110) diseases.

Pharmacological chaperone therapy

In the last last decade, protein misfolding due to 
missense mutations was demonstrated to be caus-
ative for increasing number of inborn errors of 
metabolism. Missense mutations tend to be more 
common although insertions, large deletions, pre-
mature stop codons and splicing mutations have 
been identified in many LSDs (91). They occur 
mostly outside the enzyme’s active site and have 
negative effects on protein folding efficiency, ther-
modynamic stability, and lysosomal trafficking, al-
though the mutant enzymes retain their catalytic 
properties (92). Misfolding of proteins due to mu-
tations results in aggregations and hence a wide 
range of deleterious effects or a lack of catalytic 
activity. Misfolded proteins are recognized and re-
tained in endoplasmic reticulum (ER) by a protein 
quality control system that relies on unfolded pro-
tein response (UPR) to recover from ER stres (93) 
and eventually routed for endoplasmic reticulum 
associated degradation (ERAD). Even in wild-type 
(WT) proteins, a significant fraction is misfolded or 
aggregated and degraded by the UPS within min-
utes of their synthesis despite chaperones (94). If 
prolonged ER stress continues and misfolded pro-
tein cannot be refolded or degraded, UPR causes 
the cells to undergo apoptosis (95). Another de-
fense mechanism evolved by cells to cope with pro-
tein misfolding is chaperone machinery for proper 
protein folding and their trafficking to organelles. 
Both these machineries closely coordinate to main-
tain the proteome in soluble and functional state in 
different cellular compartments. Proteostasis reg-
ulators, chemical chaperones and pharmacological 
chaperones are small molecular weight compounds 
to rehabilitate misfolded proteins and therefore 
restore protein homeostasis in misfolding diseas-
es (92). Chemical chaperones are low molecular 
weight and membrane-permeable molecules able 
to nonselectively stabilize mutant proteins, facil-
itate their folding, and rescue their physiological 
functionality. Various substances such as glycer-
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mutations via a novel multiparametric algorithm 
demonstrated that the majority of the SGSH muta-
tions impair proper folding of the three-dimensional 
conformation of the enzyme (116). This is especial-
ly relavant within the context of pharmacological 
chaperones, a highly promising therapy for the 
treatment of protein folding diseases. In addition, 
most of HGSNAT mutations results in misfolding 
of the enzyme, which is abnormally glycosylated 
and not targeted to the lysosome, but retained in 
the endoplasmic reticulum. Glucosamine, which 
is a competitive inhibitor of HGSNAT enzyme re-
sulted in significant increases HGSNAT activity in 
eight out of nine patients’ fibroblasts, indicating its 
therapeutic potential (117). Using CpGH89 from 
Clostridium perfringens, a close bacterial homolog 
of NAGLU, 2-acetamido-1,2-dideoxynojirimycin 
(2AcDNJ) and 6-acetamido-6-deoxycastanosper-
mine (6AcCAS) were shown as potential inhibitors 
to act as pharmacologic chaperones by isothermal 
titration calorimetry (ITC) and kinetic methods 
(18).

CONCLUSION

MPS III are presented with serious neurodegen-
eration which does not have a cure. While other 
MPS diseases (MPS I, II, IVA and VI) can be treat-
ed by ERT and HSCT, there is no such an avail-
able therapy for MPS III. Although substrate re-
duction therapy was shown to be effective in MPS 
IIIA and IIIB mice, mix results were obtained in 
human clinical trials. There is not much research 
in the field of pharmacological chaperone therapy 
for MPS III except for few studies. Actually, the 
fact that the majority of disease causing mutations 
are missense variations that result in misfolding 
defects and the serious neurodegenerative nature 
of the disease hold great hopes for therapeutic ap-
plication of pharmacological chaperones. Nonsense 
supression or stopcodon readthrough therapy is 
also an emerging therapy but it is feasible only for 

Iminosugars and azasugars represent a special 
class of small molecules for pharmacological chap-
erone therapy with high solubility and low toxicity 
(111,112). 1-deoxy-galactonojirimycin (DGJ) is an 
iminosugar used as a pharmacological chaperone 
for the treatment of Fabry disease and has been 
approved for use in the European Union under 
the brand name GalafoldTM (migalastat). Phase 3 
studies conducted with patients whose mutations 
were responsive to migalastat monotherapy showed 
≥50% reduction in the storage of globotriaosylce-
ramide (GL-3) in the interstitial capilleries of the 
kidney following 6 months treatment (113). It was 
shown that even treatment of wild-type α-galacto-
sidase with 1-deoxy-galactonojirimycin enhances 
its stabilization as shown by using scanning calo-
rimetry (114), so that this effect of migalastat on 
α-galactosidase can be benefited for Fabry patients 
who do not have responsive mutation. By formulat-
ing with ERT with intravenous migalastat, the sta-
bility of the active form of the enzyme in circulation 
can be increased. Similarly, improved enzyme ac-
tivity upon co-incubation of α-glucosidase and the 
chaperone N-butyldeoxynojirimycin (NB-DNJ) was 
shown both in vitro and in a mouse model of Pompe 
disease (107). In the case of type 1 Gaucher dis-
ease, pre-inbubation of glucocerebrosidase (GLA) 
with isofagomine significantluy increased stability 
of the enzyme to heat, neutral pH, and denaturing 
agents in vitro, thus resulted in increased intracel-
lular enzyme activity (115). 

Since the mutations that cause misfolding are rel-
atively prevalent in MPS III disease, pharmaco-
logical chaperone therapy has the potential to be 
a suitable treatment strategy for the majority of 
affected patients. It is known that for these diseas-
es, an enzyme activity above 10-20% is sufficient 
to preclude the development of clinical symptoms. 
The fact that pharmacological chaperones can be 
designed to cross the BBB make them candidates 
for the treatment of neurodegenerative damages of 
MPS III. A comprehensive evaluation of MPS IIIA 
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screening of other small molecules for stopcodon 
readthrough and substrate reduction therapies) for 
LSDs have been performed on patient fibroblasts, a 
cell type not primarily affected in patients. Model-
ling of relevant neuronal defects using patient-spe-
cific iPSC obtained by re-programming of their fi-
broblasts provides access to human neurons and 
hence a drug screening platform for screeening of 
small molecules for therapy.

the diseases mostly caused by PTCs such as MPS 
I-Hurler syndrome. In addition, the discovery of in-
duced pluripotent stem cell (iPSC) technology is a 
revolution for the drug discovery and modelling of 
genetic diseases. While the existing animal mod-
els for MPS III and other LSDs are valuable, they 
suffer from partially mimicking the human pheno-
type. Furthermore, most in vitro studies focusing 
on pharmacological chaperone screening (and also 
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