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which give researchers important details regard-
ing not only for specific neuronal activities but 
also for neuronal receptors (1,2). Optogenetics was 
initially used within the context of neuroscience 
to describe the approach of using light to drive or 
silence neuronal activity in the intact, living brain 
in wild type or transgenic animals, for instance, 
mice or rats (3). Optogenetics composed of two im-
portant research fields that are optics (light) which 
are used to activate or inhibit neurons, thanks to 
specific light-sensitive rhodopsins such as chan-
nelorhodopsin-2 (ChR2), halorohodosin (NpHR), 
archaerhodopsin (Arch), and genetic modifications 
which are used to synthesis of various kinds of 

INTRODUCTION

Brain is one of the most complex organs in our 
body and difficult to understand how nervous sys-
tem works properly under normal conditions. Up 
to decade ago, neuronal circuits have been mainly 
probed by traditional electric and magnetic stimu-
lations that are impossible to investigate selective-
ly specific subtypes of neurons under physiologi-
cal and pathological conditions. Other techniques, 
such as lesion studies that do not offer any chance 
to neuronal selectivity, or microinjection of neu-
rotransmitters like dopamine, glutamate, sero-
tonin etc., are limited to spatially and temporally 
constrained applications in neuroscience studies 
until the appearance of optogenetics techniques 
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ABSTRACT • There are many obstacles for uncovering the physiological and patho-
physiological mechanism of nervous system. One of most difficult challenges is the 
heterogeneity of cell types which come with billions of synaptic connections. Neurons 
are among the most challenging cells to figure out their working principles which will 
help our understanding of the brain. During the past decades, specific light-sensitive 
proteins and molecules helped scientists to develop an important technical approach 
called “Optogenetics,” with which precise inhibition or activation of neural pathways 
in nervous system can be achieved temporally and spatially using light. Interestingly, 
these light sensitive proteins come from mostly unicellular organisms such as algae 
and bacteria. Combination with genetically engineered tools like adeno-associated vi-
ruses and ion-gated channels like channelrhodopsins, halorhodopsins and archaerho-
dopsins, the activity of neurons can be manipulated by excitation and silencing. In this 
article, I reviewed basic principles of optogenetics to provide the reader with current 
updates.
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tive features have been discovered or engineered 
(17-19).

b) Halorhodopsin (NpHR)

Like activation of neurons, inhibition of neuronal 
activity is critical for understanding the mecha-
nism of neural networks, and might complement 
excitatory tools by allowing researchers to inves-
tigate the individual circuit components. One of 
the most efficient and widely used inhibitory op-
sins, NpHR, is a halorhodopsin from the archaeon 
Natronomonas pharaonis (20,21). NpHR pumps 
chloride ions into the cell upon light activation, 
resulting in hyperpolarization. With an excitation 
maximum at 590 nm, eNpHR3.0 can be stimulated 
by green, yellow, or red light.

c) Archaerhodopsins (Arch)

Proton pumps might also be used to inhibit neu-
rons through hyperpolarization, by pumping pro-
tons like (H+ ions) out of the cell, and have some 
features that make them another option to chlo-
ride pumps, which include fast recovery from in-
activation and high light-driven currents. Arch 
(archaerhodopsin-3 from Halorubrum sodomense), 
is proton pumps that provide strong efficiency in 
inhibition of neurons (22-24). 

2) OPSIN EXPRESSION

To control specific neural circuit with optogenetics, 
one of the most crucial approaches to take consid-
eration is the targeting specific neurons in brain. 
There are so many ways to target subpopulations 
of neurons such cell body, axonal terminations (25). 
Genetically modified experimental animal models 
(mostly mice and rats) that express the enzyme Cre 
recombinase (Cre) under the transcriptional con-
trol of a specific gene are typically used to target 
neuronal subpopulations. For instance, vesicular 
gamma aminobutyric acid transporter (VGAT)-Cre 
mice express Cre only in inhibitory neurons that 
express VGAT. Many different transgenic rodent 

rhodopsins by using viral approaches such as ad-
eno-associated virus (AAV). The success of optoge-
netics in neuroscience has taken attention of many 
neuroscientists and engineers in other fields, and 
now the definition of optogenetics has expanded to 
including the general field of biotechnology (2,4-6). 
In this review, I will briefly explain the most fun-
damentals of optogenetics.

1) LIGHT SENSITIVE PROTEINS

a) Channelrhodopsins (ChRs)

Channelrhodopsins (ChRs) are light-gated ion 
channels found in a unicellular alga (Chlam-
ydomonas reinhardtii) (7-9). The use of microbi-
al opsin to control the activity of neurons utilize 
channelrhodopsin-2 (ChR2), one of two channel-
rhodopsins have by this alga (10). The most obvi-
ous and important feature of ChR2 is a light-gated 
nonspecific cation channel which, when illuminat-
ed with blue light, opens and permits the passage 
of cations (positively charged sodium and calcium 
ions) and the subsequent depolarization of the cell 
(8,9). In 2005, ChR2 was introduced into hippo-
campal neurons in petri dish, and control neuronal 
spiking activity with fine temporal precision (10). 
Very brief (millisecond level) pulses of blue light 
may be used to induce single action potentials in 
ChR2-expressing neurons, and neuronal spiking 
activity driven by the activation of this opsin can 
be controlled with high precision. This preliminary 
experiments of the usefulness of ChR2 for the con-
trol of neural activity was immediately followed by 
a number of reports and scientific papers confirm-
ing its function in neurons (11,12) and usefulness 
for investigate basic questions in neuroscience 
(13-15). ChR2 has subsequently been transferred 
from in vitro to in vivo experiments, to optimize 
expression and photocurrent in mammalian sys-
tems (13,16). After these pionnering reports, the 
optogenetic toolbox has greatly become indispensi-
ble for neuroscientists, and many different opsins 
with a variety of spectral, temporal, and conduc-
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fection features in brain; hence, it is important to 
control efficiency of the viral vectors for proper ex-
pression in the targeted brain region. After virus 
is injected to targeted brain area, at least 3 weeks 
are recommended prior to beginning experiments, 
in order to allow enough time for opsin expression 
in neurons (27).

CONCLUSION

Optogenetics has changed the way of neuroscience 
to new horizons, and has produced a new genera-
tion of experiments that dissect the causal roles of 
specific neural network components in physiologi-
cal and pathological conditions. It has been used to 
increase our understanding of the neural circuits 
underlying psychiatric and neurological disorders 
(28), addiction (29), Parkinson’s disease (30), ob-
sessive compulsive disorder (31), social behavior 
(32) and reward (33), and many others (3). There 
is still an explosion in the development of new gen-
eration optogenetic tools, both through discovery 
in nature and engineering in laboratories. The 
coming years should see exciting progress in the 
development and application of these tools to de-
construct the neural networks underlying normal 
behavior and their dysfunction in psychiatric and 
neurological diseases.

lines with stable and heritable expression of Cre 
are commercially available through Jackson Lab-
oratory (www.jax.org), Charles River Laboratories 
(www.criver.com) and other breeding facilities, 
provide to researchers to target and manipulate a 
variety of different neuronal subpopulations (26).

In order to provide anatomically local specificity of 
opsin expression, it is necessary to make stereotax-
ic injections of viral vectors encoding these proteins 
in the brain regions of interest. Cre is an important 
enzyme that catalyzes site-specific recombination 
between two LoxP sites, and modern Cre-driven 
viral vectors are constructed with “double-floxed” 
genes encoding the various types of opsin, causing 
targetted gene expression only in transfected cells 
that have Cre. A fluorescent tag is also encoded in 
the viral construct such as green fluorescent pro-
tein (GFP), allowing for postmortem histological 
confirmation of gene expression in the targeted cell 
type and brain region. Cre-inducible adeno-associ-
ated viruses (AAVs) are commercially available 
from Addgene (wwww.addgene.org), North Caroli-
na University-Vector Core (https://www.med.unc.
edu). These viruses are genetically engineered, 
therefore, replication deficient and it is not known 
to cause disease in humans. The numerous types 
of AAV strains (e.g., AAV 2, 5) have unique trans-
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