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ty to an extent that patients cannot carry out their 
daily activities (5,6). Unfortunately, treatment of 
PD is symptomatic and current therapies cannot 
completely eradicate the disease. Although there 
is a substantial amount of research carried out to 
find a cure, success is limited mostly because PD 
is a complex disease with many players involved 
(7,8). So far, genetic studies identified at least six 

INTRODUCTION

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder after Alzheimer 
(1). PD produces a clinical picture with motor symp-
toms e.g., tremor, bradykinesia, rigidity, impair-
ment of postural reflexes and postural instability 
(2) and non motor symptoms e.g., depression, apa-
thy, sleep disorders and erectile dysfunction (3,4). 
If not treated properly, PD can lower the life quali-
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ABSTRACT • Background and aims: Parkin is a ubiquitin-protein ligase that is 
mutated in autosomal-juvenile Parkinsonism. Parkin’s interaction with depolarized mito-
chondria promotes mitophagy and under normal conditions removal of damaged mito-
chondria has a protective effect on cell survival. However, if the extent of mitochondrial 
depolarization is overwhelming, then Parkin helps occurrence of large scale mitochon-
drial depletion which results in cell death. In this study, the consequences of over ex-
pressing wild type Parkin in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-treated 
SH-SY5Y and HeLa cells were investigated. Materials and methods: For this pur-
pose, cell lines expressing TetR protein was established. A wild type Parkin expression 
cassette that could be induced following tetracycline treatment was introduced to these 
cells. A HeLa-Parkin cell line that was previously established was also used. Results: 
The results demonstrated that HeLa cells responded to CCCP treatment like HEK293 
cells. Twenty five percent cell death occurred within 24 hr in the absence of Parkin while 
80% cell death occurred in the presence of Parkin. In contrast, treatment of uninduced 
SH-SY5Y cells with CCCP caused 60% cell death, and this level was not increased fur-
ther by Parkin induction. Parkin expression in glucose-depleted medium also rendered 
HeLa cells but not the SH-SY5Y cells more sensitive to CCCP-induced cell death. Con-
clusion: Finally, Parkin expression protected SH-SY5Y cells from cell death induced 
by tunicamycin treatment, which induces ER stress by blocking N-linked glycosylation, 
suggesting that Parkin protects these cells from this type of stress.
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removal of defective mitochondria. The increase 
in the rate of mitochondrial removal (mitophagy) 
should reflect onto the rate of cell death. 

Morrison et al. (2011) tested these assumptions 
and proposed a simple cell based assay to meas-
ure Parkin’s activity (22). In their study, the au-
thors clearly demonstrated that Parkin caused an 
increase in the rate of removal of CCCP-treated 
cells. In this study, we used their assay to measure 
activity of Parkin protein in HeLa and SH-SY5Y 
cells. Our findings suggested that Parkin induced 
cell death upon mitochondrial depolarization is cell 
type dependent. In this study, we also measured 
Parkin’s activity by using an assay which relied on 
ER-stress created by tunicamycin. This assay ap-
peared to be cell-type independent.

MATERIALS AND METHODS

Expression plasmids

Full-length cDNA of human WT Park2 was cloned 
into pCDNA4/TO (Life Tech, USA) by reverse tran-
scription and long PCR with appropriate primers 
(23). The construct was sequenced and in-frame 
Parkin sequence was verified (Iontek Inc., Tur-
key). pCDNA6/TR was from Life Technologies 
(Life Tech, USA).

Cell culture and preparation of stable cell lines 

expressing WT and mutant Parkin proteins

SH-SY5Y cells were grown in EMEM supplement-
ed with 10 % (vol/vol) tetracycline-reduced fetal bo-
vine serum, 100 U/ml penicillin-streptomycin and 
2 mM L-glutamine at 37°C in a humidified 5% CO2 
atmosphere. To prepare Tet-R+ stable SH-SY5Y 
cells, pcDNA6/TR was transfected to SH-SY5Y 
cells by electroporation and the transfected cells 
were subjected to a selection in a medium con-
taining 5 µg/ml blasticidin. Individual clones were 
isolated, grew and examined for TetR protein ex-
pression by western blotting with an anti-TetR an-
tibody (Clontech, USA). One of the colonies which 

genes that are well-validated. These include SNCA, 
LRRK2, PARK2, PINK1, DJ-1, and ATP13A2 (9). 

Among these genes we focused on PARK2 which 
encodes Parkin protein (10). Parkin is an E3 ubiq-
uitin-protein ligase and plays a pivotal role in 
cell sanitation by helping the removal of unwant-
ed proteins by targeting them to proteosome (11). 
Although mutations on Parkin are frequently as-
sociated with autosomal recessive juvenile or ear-
ly-onset PD (ARJP or EOPD) Parkinsonism (10,12, 
13), evidence suggests that Parkin also plays other 
roles in cell metabolism and can have a role in the 
emergence of other diseases such as cancers (2,14).

Mechanism of Parkin’s involvement in PD has 
long been investigated. It is currently thought that 
the loss of Parkin’s targeting function to the pro-
teosome due to disease causing mutations leads 
to abnormal accumulation of toxic proteins and 
neurodegeneration (15). Recent studies, however, 
accumulated multiple lines of evidence from ani-
mal models, in vitro and patient-based studies and 
demonstrated the involvement of Parkin not only 
in impaired protein turnover but also in mitochon-
drial dysfunction (16,17). In other words, Parkin 
also functions as a potent mitochondrial protection 
factor. Based on the gathered experimental data, 
a model for the maintenance of mitochondrial in-
tegrity by Parkin was proposed (18). In that model, 
PINK-1 which is a PTEN-induced protein kinase 
(19) phosphorylates Parkin to translocate it from 
cytosol to mitochondria where it exerts its mito-pro-
tective effects (20). Phosphorylation of Parkin en-
hances the degradation of dysfunctional mitochon-
dria by targeting them to autophagosomes, and 
replaces the discarded mitochondria by promoting 
mitochondrial biogenesis (18, 21). Based on this in-
formation, several assumptions can be made: (1) If 
mitochondria is chemically depolarized in the cell 
then Parkin should be able to remove the defective 
mitochondria. (2) If the extent of depolarization is 
kept high and Parkin is overexpressed, then the 
overexpressed Parkin should increase the rate of 
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for four days and then were subjected to WST-1 
assay (Roche Inc., USA). The absorbance of each 
well was determined at 450 nm with a plate read-
er (Multiscan FC, Thermo Scientific, USA) and the 
background values were subtracted. Results were 
presented as percentages of the controls. Each as-
say was performed in triplicate and the experiment 
was repeated at least twice. 

Trypan blue exclusion assay

The number of death cells was determined by tryp-
an-blue exclusion assay (24). 2×105 cells of each cell 
lines were plated into each well of a 24-well plate 
and allowed to attach for 16 hr. Media was then 
replaced with either standard media or standard 
media containing 1µg/ml tetracycline. After 16 hr. 
of induction, 10 µM CCCP was added to the rele-
vant wells and the cells were incubated for 24 ad-
ditional hours. Cell suspensions were then simply 
mixed with trypan blue solution (0.4% w/v trypan 
blue in 1 × PBS) and then visually examined by 
an inverted microscope to determine whether cells 
took up (non-viable) or excluded the dye (viable). 
Cell counting was performed with a hemocytome-
ter and the percent of viable cells was calculated.

Tunicamycine treatment and whole-cell 

Parkin assay

The experiment was performed as explained under 
the title of “CCCP-treatment and whole-cell Par-
kin assay” except that 10 µM tunicamycine was 
used instead of 10 µM CCCP.

Real-Time PCR to determine Bip expression 

levels

Total RNA was isolated from cultured cells by us-
ing RNA isolation kit (Qiagen, USA) and the first 
strand synthesis was performed by using oligo-dT 
primers (Thermo Scientific, USA). RT-PCR was 
performed by using RT2-SYBR Green qPCR mix 
(Qiagen, USA). The primer pair used in RT-PCR 
reaction were (sense) 5’-CCCAACTGGCTGGCAA-

highly expressed TetR protein was labelled as SH-
SY5Y-TetR+ and used in subsequent experiments.

SH-SY5Y-TetR+ cells were transfected with pcD-
NA4/TO harboring WT PARK2 to create an induc-
ible stable cell line expressing WT Parkin protein. 
Transfected cells were then subjected to a selection 
in the medium containing 50 µg/ml zeocin. Individ-
ual clones were isolated, grew and examined for 
Parkin protein expression by western blotting with 
an anti-Parkin antibody (Santa Cruz, USA). One of 
the screened colony expressing WT after tet induc-
tion, labeled as SH-SY5Y-TetR+ -WT-Parkin, was 
selected for subsequent studies. 

CCCP-treatment and whole-cell Parkin assay

103 cells were plated into each well of a 96-well 
plate and allowed to attach for 16 hr. Media was 
then replaced with either standard media or stand-
ard media containing 1µg/ml tetracycline. After 16 
hr. of induction, 10 µM CCCP was added to the 
relevant wells and the cells were incubated for 24 
additional hours (22). The cells were then subject-
ed to WST-1 assay (Roche Inc., USA). The absorb-
ance of each well was determined at 450 nm with 
a plate reader (Multiscan FC, Thermo Scientific, 
USA) and the background values were subtracted. 
Results were presented as percentages of the con-
trols. Each assay was performed in triplicate and 
the experiments were repeated at least twice. 

CCCP treatment and whole-cell Parkin assay 

in glucose-free medium

103 cells of each cell line were plated into each well 
of a 96-well plate and allowed to attach for 16 hr. 
Media was then replaced with either standard 
media or standard media containing 1µg/ml tetra-
cycline. After 16 hr. of induction, to the relevant 
wells 10 µM CCCP was added and the cells were 
incubated for 24 additional hours. The standard 
media were then washed with cold PBS for three 
times and replaced with glucose-free galactose sup-
plemented media. The cells were allowed to grow 
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of the cells died. We repeated the experiments of 
Morrison et al. (2011) by using our Parkin induc-
ible SH-SY5Y cell line. Sixty three percent of the 
CCCP-treated SH-SY5Y cells, which lacked ex-
pressed Parkin lost their viability within 24 hr. 
Similarly, 57% of the CCCP-treated and Parkin 
expressing SH-SY5Y cells lost their viability with-
in 24 hr. (Figure 2A). 

To explain the disagreement between our results 
and the results obtained by Morrision et al. (2011), 
we included a control experiment to our assay in 
which we used a Parkin inducible HeLa cell line 
(Figure 2A). HeLa cells originate from non-neu-
ronal cells like HEK293, whereas SH-SY5Y cells 
originate from brain and display motor-neuron 
like properties (27). Twenty six percent of the 
CCCP-treated HeLa cells which lacked expressed 
Parkin lost their viability within 24 hr. However, 
when Parkin expression was induced 80% of the 
CCCP-treated HeLa cells lost their viability within 
24 hr indicating that Parkin expression caused a 
significant decrease in cell viability. To eliminate 
the possibility that the differences in cell death 
response to CCCP treatment are simply a result 
of different levels of Parkin expression, the levels 
of Parkin after 24 hr of induction in both HeLa 
and SH-SY5Y cells were determined. The result 
demonstrated that cell death response to CCCP 
treatment was not due to different levels of Parkin 
expression (Figure 2B).

WST-1 assay used in above experiments to as-
sess cell viability is based on the cleavage of the 
tetrazolium salt (WST-1) to formazan by cellular 
mitochondrial dehydrogenases. We predicted that 
CCCP, which directly affects mitochondrial func-
tion through its protonophore action might affect 
WST-1 assay and thus additional measures of cell 
viability were needed. We therefore performed try-
phan blue exclusion assay to see if the results of 
WST-1 assay would be similar to the results of try-
phan-blue exclusion assay. Although the figures 
were not exactly the same, the results obtained 

GATG-3’ and (antisense) 5’-TGGAGGTGAGCT-
GGTTCTTGG-3’. The results were analyzed with 
REST 2009 (Qiagen, USA).

RESULTS

Generation of Parkin inducible SH-SY5Y cell 

line

In this study, we performed inducible Parkin ex-
pression experiments by using the Tet-on regu-
lated gene expression system (25). The expression 
was tight enough that only after the induction, 
Parkin protein can be detectable on the western 
blots. When a time dependent expression study 
was performed, Parkin expression started to ap-
pear on blots after 5 hr. of induction when 5 µg to-
tal protein was used in mini-gels for western blot-
ting (Figure 1). A previously created HeLa cell line 
expressing Parkin protein also displayed a tightly 
controlled Parkin expression (26). 

Whole cell Parkin assay

Morrisson et al. (2011) studied the effect of induc-
ing Parkin expression in inducible HEK-293 cells 
cultured in the presence of mitochondrial uncou-
pler CCCP (22). They determined that after 24 hr. 
of CCCP treatment, approximately 50% of the cells 
lost their viability. When they expressed Parkin 
in CCCP treated cells, the number of viable cells 
decreased dramatically and approximately 90% 

Figure 1  Time-dependent expression of Parkin protein 
after induction in SH-SY5Y cells.
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not cause a change in cell viability in CCCP-treat-
ed SH-SY5Y cells (Figure 2C). 

from tryphan blue assay also demonstrated that 
unlike HeLa cells, over expression of Parkin did 

Figure 2  (A) WST-1 assay to demonstrate the effect of Parkin expression on cell survival in CCCP-treated cells. (B) Parkin 
expression in SH-SY5Y and HeLa cells after 24 hr of induction. (C and D) Tryphan blue exclusion assay to demonstrate the 
effect of Parkin expression on cell survival in CCCP-treated cells. Letters represent: (O) control culture in standard media, (T) 
culture in standard media supplemented with tetracycline for Parkin induction, (C) culture in standard media supplemented 
with CCCP, (T/C) culture in standard media supplemented with tetracycline and CCCP. Statistical comparisons were carried 
out between groups T and T/C by using independent 2-sample t-test (P < 0.01).
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kin protein in galactose medium lost their viability 
(Figure 3A). On the other hand, under the same 
culture conditions, in CCCP-treated SH-SY5Y cells 
a high percentage of live cells were encountered af-
ter CCCP-treatment (Figure 3B). The findings of 
this experiment were similar to the findings of the 
cell-based Parkin assay.

ER stress by tunicamycin induction may be  

a way to assay activity of Parkin

Abnormal accumulation of unfolded proteins in the 
ER is a constant threat to cell viability and thus 
cells possess several mechanisms to fight against 
this stress. However, despite the unfolded pro-
tein response, cell death occurs if the amount of 
accumulated unfolded protein exceeds a threshold 
level. A previous study demonstrated that Parkin 
is able to suppress unfolded protein stress and 
able to prevent cell death through its E3 ubiqui-
tin protein ligase activity (19). In a recent study, 
similar findings were also reported by Bouman et 
al. (2011) who transiently expressed the wild type 
and the mutant Parkin proteins in SH-SY5Y cells 
treated with tunicamycin and analyzed cells with 
caspase-3 antibody using immunofluorescence mi-
croscopy (29). In this study, we used a simple MTT-
based assay (WST-1) for measuring the cell-based 
Parkin activity. Cells treated with tunicamycin 
went under stress as demonstrated by an increase 
in the Bip mRNA level (12-fold increase upon treat-
ment) (Figure 4A). When tunicamycin-treated cells 
were assayed with a modified MTT reagent in 96-
well plates to assess their viabilities, we observed 
that 33% of the SH-SY5Y cells treated with tunica-
mycin in the absence of over expressed WT Parkin 
lost their viability, while only 15 % of the SH-SY5Y 
cells treated with tunicamycin in the presence of 
over expressed Parkin lost their viability (Figure 
4B). Similar results were also obtained with HeLa 
cells indicating that irrespective of the cell type 
Parkin helped to preserve cellular function and 
cell viability under stress and this property of Par-
kin may be used to assess its biologic activity. 

Biochemical evidence for SH-SY5Y cell 

survival in CCCP-supplemented media

Cells grown in glucose media generate their ATP 
by glycolysis largely bypassing the mitochondria. 
However, when cells are grown in galactose sup-
plemented media, they are forced to use oxidative 
phosphorylation for generation of ATP. When mi-
tochondria are damaged in galactose supplement-
ed glucose-free media, the cells then become more 
vulnerable to mitochondrial dysfunction. There-
fore, by growing up a group of cells in galactose 
supplemented media, the extent of mitochondri-
al damage can be measured (28). To provide bio-
chemical evidence that SH-SY5Y cells expressing 
Parkin preserves mitochondrial function after 
CCCP-treatment, we carried out an experiment in 
glucose-free galactose supplemented medium. Ap-
proximately 70% of the HeLa cells expressing Par-

Figure 3  WST-1 assay in galactose supplemented glucose 
deficient media. Letters represent: (O) control culture in ga-
lactose supplemented glucose deficient media, (T) culture 
in galactose supplemented glucose deficient media with 
tetracycline for Parkin induction, (C) culture in galactose 
supplemented glucose deficient media supplemented with 
CCCP, (T/C) culture in galactose supplemented glucose de-
ficient media supplemented with tetracycline and CCCP. 
Statistical comparisons were carried out between groups T 
and T/C by using independent 2-sample t-test (P < 0.01).
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Figure 4  (A) RT-PCR analysis to demonstrate the increase in Bip mRNA level upon tunicamycine induced cell stress. (B) 
WST-1 assay after Parkin induction in tunicamycine treated cells. Letter (O) represent the control culture in standard media. 
Statistical comparisons were carried out between groups Tun and Tun-Tet by using independent 2-sample t-test (P < 0.01).
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